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ABSTRACT. In this article we present tstimstts of the cosmic microwave background anisotropy 
that is produced by a network of cosmic stringr. String networks were evolved dynamically in a 
flat matter-trs cosmology!J Using a formalism s for calculating microwave anisotropy generated 
gravitationally by moving objects we have computed the temperature patterns produced by these 
networks. Inherent inaccuracies of our technique for calculating AT/T mrt discussed. The anguhr 
size of our temperature maps depends on the rtdshift of last rcatttring but will be in the range 
70 - 400. The temperature maps have (AT/T)RMs - l?Gp/c’ where p is the model-dependent 
linear m-s density of the strings. Comparison with snisotropy experiments places an upper limit of 
5 x 10-e on GJL/# . The “stringy; non-Gaussian character of the temperature fields is illustrated. 

Presently the only known physical mechanisms for producing the observed cosmologi- 
cal inhomogeneities involve either cosmic strings or quantum fluctuations produced during an 
inflationrtry epoch? Cosmic strings are linear topological defects that are predicted by some 
grand unified theories to form during a spontaneous symmetry breaking phase transition in 
the early universe! In inflationary scenarios only the density inhomogeneities and a gravita- 
tional wave background survive to be detected during the present epoch, and neither of these 
would carry any unambiguous signature of their inflationary origin. In contrast, in the string 
scenarios, the strings themselves survive to the present epoch and have the unique observable 
signature of producing discontinuous jumps in the intensity of the microwave background 
radiation ( MBR)?s7 

In order to estimate the sensitivity of anisotropy experiments to the temperature pat- 
terns expected from strings requires knowledge of the statistical properties of the string 
networks. It is expected that these networks evolve toward an equilibrium “scaling solution”. 
Thus the present properties of the network may be determined without knowledge of the 
initial conditions. Numerical simulations of string networks in an expanding universe have 
demonstrated the existence of the scaling solution and revealed some of the properties of this 
equilibrium. It2 We have taken one such matter era (a a t2j3) simulation and used the time 
evolution of the network to estimate the temperature pattern that would be produced by the 
strings in the simulation if viewed at a distance. 
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Geometry of the String Simulation 

Here we explain the geometry of the string simulation. For details of numerical tech- 
nique and a description of the results regarding the strings we refer the reader to refs. 1 and 
2. The string simulation was done in a cube of fixed comoving size with periodic boundary 
conditions. The initial horizon-size (3t) was 0.25 times the cube size and the simulation con- 
tinued for an expansion factor of 16 so that the final horizon size was equal to the cube size. 
If z; is the epoch at the start of the simulation then the comoving size of the box is 

L = &$(I + z$+ = 759 
. 0 J- E h,-b,Mpc 

i (1) 
The photons for which the temperature shift was calculated consisted of three planes of 
photons moving in the 2, y, and E directions each of which had time to cross 0.75 of the cube 
length during the run. The geometry is such that these are approximately the photons we 
would see at a single instant if q = 3 >> 1. The temp erature shifts we have calculated for 
these photons are only those from the L x L x 0.75L subset of our cube which the photons 
have swep.t out. These photons will subtend a square on our sky with angular size 

eL @Hi - 
0.25 

@Hi = 1 ~ rad. = 1.8” 9 > 1, (2) 

where OH, is the apparent angular size of the horizon at zi. In the matter era the projected 
angular length of string in the redshift interval [zi, zf] scales as 

for a random patch of sky where we have assumed 0s x 1. Thus most of the visible strings 
-are concentrated at high redshifts near the surface of last scattering. In this letter we shall 
take the simulation volume to be up against the surface of last scattering, i.e. 3 = zb. We 
are thus missing no visible strings kom in back of the simulation cube, but we are missing 
strings from between the cube and us. Equation (3) tells us that we have included only 75% 
of the string that should be included for h x 1000 (which is correct if the universe was not 
reionised soon after recombination). To compensate for this we have placed two simulation 
volumes end to end and thus cover an expansion factor of 256. The photons we are considering 
start traversing the second simulation volume when 1 + t is 16 times less than when they 
started traversing the first simulation volume. Equation (2) then tells us that the comoving 
size of the second simulation volume, L’, must be 4 times larger that of the first, L. Hence we 
only need consider & of the photons traversing the second volume. The composite map now 
includes all but 6% of the correct number of strings for zb M 1000. On the other hand, if the 
universe becomes reionized at high redshifts then then zk could be as low as 30. In this case 
we have included about 18% too many strings. We feel this is a good compromise given the 
uncertainties of reionization. The redshift of last scattering also determines the, angular size 
of the region for which we have calculated the temperature pattern as shown by equation (2). 
Thus the apparent angular size of our temperature pattern should be in the rather large range 
& E [7",40"]. Whil e o b servers might wish for firmer predictions, theoretical uncertainties 
just do not allow it. The ionization history of the universe will depend on the efficiency of 
primordial star formation which is not well understood. 
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The Temperature Calculation 

The gravitational fields of strings produce significant anisotropies in the microwave 
background because of their relativistic motions. 617 To calculate the temperature pattern 
from this effect we have used a Fourier version of the flat-space formalism given in ref. 3. 
With this method we can impose periodic boundary conditions on the temperature pattern 
to go along with the periodic boundary conditions of the string simulation. This formalism is 
not generally applicable to an expanding universe. However, as we shall describe, we do not 
expect the formalism to give too bad an estimate of the anisotropy. A proper cosmological 
treatment of the anisotropy with present techniques would be much more computer intensive 
and would thus yield results with a much smaller dynamic range. Furthermore the peculiar 
stringy nature of the temperature patterns depends on short angular distance behavior of the 
anisotropy pattern which is accurately represented in our results. 

The formalism used gives an accurate estimate of the temperature shift induced by a 
segment of string for light rays which pass much closer than the horizon distance from the 
segment but overestimates the effect for light rays with larger impact parameters. Thus our 
maps should contain spuriously large temperature anisotropy for large angular wavelengths 
but should be fairly accurate for wavelengths smaller than the projected horizon size. Many of 
the qualitative features we are interested in here should not be affected by this long wavelength 
component of the temperature pattern. We shall also see that even with the non-cosmological 
formalism there is a natural low kequency cutoff at about the projected horizon size due to 
the coherence length of the strings themselves. Other effects neglected by our technique are 

(1) Sachs-Wolfe effect from potential perturbations at the surface of last scattering, 

(2) Sachs-Wolfe effect from decaying-mode potential perturbations between the sur- 
face of last scattering and us, 

(3) Anisotropies from baryonic perturbations at the last scattering surface, 

(4) Anisotropies from gravitational waves emitted by strings before last scattering, 

(5) Possible secondary anisotropies should the universe become reionized and from 
foreground sources. 

We expect that (2), (3) and (4) should lead to smaller amplitude perturbations than those 
discussed here, although we have no space to justify these sentiments here. Effect (5) is 
very model dependent and could be important or negligible. Effect (1) is probably the 
most important and its amplitude could be comparable to the one we are considering!vQ If 
the universe does not become reionized we would expect that the coherence angle of this 
component of anisotropy would be fairly small (- 10’) b ecause the surface of last scattering 
is fairly thin (A%/% - 0.1). However if the universe is reionized then it is likely that 
fhfzl, - 1 and the surface of last scattering would only contribute to longer wavelength 
(- 0,) anisotropies. While many of the stringy features of the temperature pattern will 
persist if A.zl,/~ - 1, detecting these features may be problematic if there is no reionization 
and A+/zl, - 0.1. In any case the reader should consider these calculations as idealized in 
such a way as to make their stringy character most evident. 
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FIGURE 3. The power (AT1/T1 x (Gp/$)-‘) in various wavelength bins in the anisotropy pattern 
produced as a string network expands by a factor of 2. 0 Q refers to the initial angular size of the 
horizon. The error bars are the standard deviation about the mean for 12 different slices through a 
single simulation. The dazhed line is an analytic fit. 

(1,l) modes in’ the rest of our discussion. Aside from the fundamental modes there is no 
clearly significant evolution of the power spectra when compared to run to run variations. 
Undoubtedly this is partially due to the small number of simulations, but in any case we feel 
that for the purposes of anisotropy the strings are close enough to the scaling solution that 
this is not a major inaccuracy in our method. 

In figure 3 we present the average of as well as the standard deviation of the power in 
various wavelength bins for all of the 12 slices (4 slices per direction, 3 directions) that we 
have calculated. There is a clear peak at about half the horizon size which is the imprint of 
the coherence length of the strings on the temperature pattern they induce. There is also 
some evidence for convergence at both long and short wavelengths. Cosmological corrections 
to our formalism should cut off the long wavelengths more sharply, but given the cutoff that 
is already present it is not clear this will make much of a difference. To make the results 
displayed in figure 3 more useful we give a fit to this spectra. The total power in wavelengths 
shorter than a wavelength X, is well fit by the function 

AZTa 
&(A < L,@H*) = 7 

x1.7 

(0.6E)&j’.7 + A~-7 
where AzT 

eGp 
-* 7’ T (4) 

The quantity v is the rms anisotropy from strings in the redshift interval z to 22. The 
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FWHU = 0.040 e, <dT/T>, = lg.87 - 

FIGURE 5. Shown are the responses of three single beam detectors if they were to make a linear scan 
across the string temperature map (Fig. 1). Displaced 100 units above is a scan through the random 

phase temperature map (Fig.4). The three detectors have FWHM beamwidths 4’dlOOO/(l + ~1,) (top 

curves), 2’ dlOOO/(l + zl,) (middle curves), and 0.91~1000/(1 + ~1.) (bottom curves). The angular 

length of each scan is the same as the angular sise of the 2-d maps, i.e. 7.2O d lOOO/(l + ~1,). 

will allow for actual detection of strings. To illustrate the effect of these phase correlations, 
we have Fourier transformed the temperature maps we had combined to produce figure 1. 
We then changed the phase of each Fourier amplitude to a random number and combined the 
two maps in the same way we produced figure 1. The resulting pattern is shown in figure 4. 
This second image has exactly the same power spectrum, but the phase coherence has been 
lost. The high frequency modes do not interfere constructively with the low frequency ones 
to produce sharp features, but give rise to many small scale fluctuations. Another way to see 
the difference between random Gaussian fluctuations and “stringy” ones is to examine one- 

dimensional scans of the two temperature maps (figures 1 and 4). Figure 5 shows three such 
scans for each temperature map. The three pairs of scans differ only in that the temperature 
patterns have been smoothed (in 2 dimensions) with different Gaussian windows for each scan. 
The full width at half maximum for these scans are 0.04, 0.02, and 0.008 of @Hi or 4, 2, and 
0.9 XJ arc minutes. It is clear that a FWHM of 2 arc minutes is quite sufficient in 
order to distinguish the flat plateaus and sharp jumps of the “stringy” temperature pattern 
from its Gaussian counterpart. For ZL, x 1000 this begins to be somewhat more difficult 
(though still possible) with a FWHM of 4 arc minutes. 
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